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Abstract
(AlxGa1−x)2O3/Ga2O3 metal-oxide semiconductor field effect transistors are emerging as candidates
for rf and power electronics, but a drawback is the high contact resistances on these wide bandgap
semiconductors. A potential solution is to use narrower gap transparent conducting oxides such as
IZO and ATO to reduce the interfacial resistance. In this paper, we report the measurement of the
valence band offset of the AZO/(Al0.14Ga0.86)2O3 and ITO/(Al0.14Ga0.86)2O3 heterointerfaces using
x-ray Photoelectron Spectroscopy. The single-crystal β-(Al0.14Ga0.86)2O3 was grown by molecular
beam epitaxy. The bandgaps of the sputter-deposited AZO and ITO were determined by reflection
electron energy loss spectroscopy to be 3.2±0.20 and 3.5±0.20 eV, respectively, while high
resolution XPS data of the O 1s peak and onset of elastic losses was used to establish the
(Al0.14Ga0.86)2O3 bandgap as 5.0±0.30 eV. The valence band offsets were −0.59 eV±0.10 eV
and −1.18±0.20 eV, respectively, for AZO and ITO. The conduction band offsets were
1.21±0.25 eV for AZO, and 0.32±0.05 eV for ITO. Both were of the straddling gap, type I
alignment on β-(Al0.14Ga0.86)2O3 and all the offsets are negative, consistent with achieving
improved electron transport across the heterointerface.
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Introduction

β-Ga2O3 is under development for power switching and control
electronics as well as solar blind UV detection [1–11]. The
β polymorph of Ga2O3 has a bandgap of ∼4.8 eV and is
commercially available in large diameter bulk and epitaxial
form [1–3, 8]. The absence of p-type doping capability [12, 13]
has led to a focus on vertical Schottky rectifiers and gate all-
around FinFET-like devices which operate in accumulation
mode in the on-state [1, 3–5, 7–10]. Additionally for lateral
devices, the (AlxGa1−x)2O3/Ga2O3 heterostructure has been

recently demonstrated using modulation doping of the barrier
layer [14–21], as β-Ga2O3 is nonpolar. There is strong interest
in these heterostructures involving β-(Al, Ga)2O3 monoclinic
phase alloys, in which the bandgap can be varied from 4.8 to
6 eV [14–21]. Typically, the x value is between 0.12 and 0.18 in
the alloys. One of the drawbacks of β-(AlxGa1−x)2O3/Ga2O3

heterostructures is the high contact resistances encountered
when fabricating Ohmic contacts [14–20].

One potential method for reducing the contact resistance
is to include a lower gap transparent conducting oxide as an
interlayer between the metal and the wide bandgap semi-
conductor [22–27]. The most commonly used TCOs are
indium tin oxide (ITO) and aluminum zinc oxide (AZO).
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Sputtered films of both of these materials have been reported
as intermediary layers for forming Ohmic contacts on Ga2O3

[22, 25, 27]. The use of Pt/ITO bi-layers to β-Ga2O3

improved the Ohmic contact properties compared to Pt/Ti
through formation of an interfacial layer with lower bandgap
and higher doping concentration than the Ga2O3 [22]. AZO
interlayers are also proven effective in lowering contact
resistance of Ti/Au contacts on n-type, Si implanted
β-Ga2O3. A specific contact resistance of 2.82×10−5Ω cm2

was reported for annealing at 400 °C, while Ti/Au contacts
without the AZO interlayer did not lead to Ohmic behavior
[25]. The band alignment at the heterointerfaces is obviously
critically important in determining the favorability of carrier
transport [28–39]. Currently, there have been no reports for
the band alignments of these TCOs on (AlxGa01−x)2O3.

In this paper, we report on the determination of the
band alignment in the AZO/(Al0.14Ga0.86)2O3 and ITO/
(Al0.14Ga0.86)2O3 heterostructures, in which the TCOs were
deposited by sputtering onto (Al0.14Ga0.86)2O3 grown by
molecular beam epitaxy (MBE). This alloy composition is
typical of that used in heterostructure transistors. The
valence band offset was obtained from XPS measurements
[40] and by measuring the respective bandgaps of the
TCOs, we obtained the conduction band offset in the het-
erostructures and determined the band alignment type.

Experimental

1.5 nm AZO or ITO was deposited by RF magnetron sput-
tering on the (Al0.14Ga0.86)2O3/Ga2O3 structures and thicker
layers (150 nm) on quartz substrates at room temperature
using 3 in. diameter composite ITO (In2O3/SnO2 90/10) or
AZO (Al2O3/ZnO2 2/98 wt%) targets. The RF power was
125W and the working pressure was 5×10−6 Torr in a pure
Ar ambient. The DC bias on the electrode under these con-
ditions is in the range of 30–40 V. Both thick (150 nm) and
thin (1.5 nm) layers of the dielectrics were deposited to be
able to measure both bandgaps and core levels on the
β-(Al0.14Ga0.86)2O3. Hall measurements on the thick AZO
films showed resisitivity of 7.4Ω cm−1, carrier concentration
of 1.78×1018 cm−3 and Hall mobility of 26 cm2 V−1 s−1.
X-ray diffraction 2θ scans showed a (002) peak at 34.3°,
indicative of a [001] preferred orientation with the c-axis
perpendicular to the substrate, similar to previous reports [41].
The thick ITO, XRD showed peaks due to (400) and (222),
indicating the coexistence of [100] and [111] textures
[42, 43]. The resistivity was 2.6×10−1Ω cm, with Hall
mobility of 19 cm2 V−1 s−1 and carrier concentration of
9×1016 cm−3. For substrate cleaning pre-deposition, the
following rinse sequence was employed: acetone, IPA, N2

dry, and finally Ozone exposure for 15 min. These films were
deposited onto epi (Al0.14Ga0.86)2O3 that was grown by MBE.
The sample was grown by oxygen plasma-assisted MBE
using a Ga flux of 6×10−8 Torr, Al flux of 2×10−8 Torr,
an oxygen plasma power of 280W and a chamber pressure of

1.2×10−5 Torr. Under these conditions it is possible to
maintain the phase purity of the alloy [44]. These AGO
(Al0.14Ga0.86)2O3 layers were doped with Si to produce an
n-type carrier density of 1017 cm−3, with mobility of
180 cm2 V−1 s−1 at room temperature and were 55 nm thick.
The donor concentration was determined by electrochemical
capacitance–voltage profiling at a frequency of 740 Hz on
calibration samples and the composition was determined by
x-ray diffraction on these same samples [44]. These epitaxial
layers were grown on top of Sn-doped (6.3×1018 cm−3)
bulk β-phase Ga2O3 single crystal substrates (500 μm thick)
with (010) surface orientation grown by the edge-defined
film-fed growth method. The heterostructure samples are
shown schematically in figure 1.

The chemical state of the ITO, AZO, and β-(Al0.14Ga0.86)2O3

and identification of peaks for high resolution analysis were
obtained from XPS survey scans in a ULVAC PHI XPS system.
This employs a monochromatic, Al x-ray source (energy
1486.6 eV) at a source power of 300W. The analysis area was
10μm in diameter with a take-off angle of 50° and an acceptance
angle of ±7°. The electron pass energy was 23.5 eV for the high-
resolution scans and 93.5 eV for the survey scans.

Charge compensation was achieved with a dual beam
charge neutralization system with simultaneous low-energy
electron and ion beams [45]. Using the position of the
adventitious carbon (C–C) line in the C 1s spectra at
284.8 eV, charge correction was performed. During the
measurements, the samples and electron analyzers were
electrically grounded to provide a common reference Fermi
level. Differential charging is a concern for semiconductor
band offset measurements [45] and while use of an electron
flood gun does not guarantee that differential charging is not
present, our experience with oxides on conducting substrates
has been that the differential charging is minimized with the
use of an electron gun. Calibrations without the guns verified
that was the case [36].

Reflection electron energy loss spectroscopy (REELS)
was employed to measure the bandgap of the AZO and ITO
[46]. By taking a linear fit to the leading plasmon peak and
finding its zero energy with the background, a direct mea-
surement of valence to conduction band energy is made.
REELS spectra were obtained using a 1 kV electron beam and
the hemispherical electron analyzer.

Figure 1. Layer structure of the heterostructures used in this work.
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Results and discussion

Figure 2 shows the stacked XPS survey scans of thick
(150 nm) AZO and ITO, 1.5 nm AZO and ITO on
β-(Al0.14Ga0.86)2O3, and an (Al0.14Ga0.86)2O3 reference sam-
ple. There is no evidence of metallic contamination from the
sputtering process, which if present in sufficient quantities can
form oxides that reduce the overall bandgap of the dielectrics
and affect the resulting band alignment [47–50].

We obtained the valence band maximum (VBM) from
linear fitting of the leading edge of the valence band and
the flat energy distribution from the XPS measurements,
and finding the intersection of these two lines [40, 49]. This
is shown in figure 3 for the thick AZO and ITO, and the
(Al0.14Ga0.86)2O3. The VBMs were measured to be 3.0±
0.2 eV for β-(Al0.14Ga0.86)2O3, 2.53±0.4 eV for the AZO
and 2.74 eV±0.4 eV for the ITO.

The measured bandgaps for the AZO and ITO were
3.2±0.30 eV and 3.5±0.30 eV, respectively, from the
REELS data of figure 4. The bandgap of the β-(Al0.14Ga0.86)2O3

was determined to be 5.0±0.3 eV, from XPS O1s based
electron energy loss measurements [40, 41]. This is consistent
with past work on powdered samples of (AlxGa1−x)2O3 over the
composition range x=0–0.4 [51]. If we use the theoretical
relationship derived by Peelaers et al [29], we would expect a
bandgap of 5.14 eV at our composition of x=0.14, close to the
measured result. The difference in bandgaps between AZO and
ITO and β-(Al0.14Ga0.86)2O3 are therefore 1.8 and 1.5 eV,

respectively, and then it is necessary to determine how these are
partitioned between valence and conduction bands.

To determine the band alignment, we used the standard
core level spectra approach due to Kraut et al [40]. This
method relies on precise measurement of a core level and the
valence band edge for each material investigated and the shift
of the core levels when the two materials have formed the
heterojunction. The equation used to calculate the offset is:

E E E E E E E .V core
1

VBM
1

core
2

VBM
2

core
1

core
2D = - - - - -( ) ( ) ( )

It is important to use a well-defined core level since the off-
sets are small compared to the core level energy and more
deviation is expected at higher core level energies.

High resolution XPS spectra of the VBM-core delta
region are shown in figure 5 for the β-(Al0.14Ga0.86)2O3 and
thick AZO and ITO samples. These were used to determine
the selected core level peak positions. Figure 6 shows the
XPS spectra for the β-(Al0.14Ga0.86)2O3 to AZO and ITO
core delta regions of the heterostructure samples. These values
are summarized in table 1 and were then used to calculateΔEv.

Figure 7 shows the band alignment of the AZO/
β-(Al0.14Ga0.86)2O3 and ITO/β-(Al0.14Ga0.86)2O3 heterostruc-
tures. Both are nested, type I systems. The valence band
offset is −0.59±0.10 eV and conduction band offset is
−1.21±0.25 eV for the AZO/β-(Al0.14Ga0.86)2O3. For the
ITO/β-(Al0.14Ga0.86)2O3 heterostructure, the values are −1.18±
0.20 eV for valence band offset and −0.32±0.05 eV for the
conduction band offset. These were obtained using the

Figure 2. XPS survey scans of thick sputtered AZO and ITO, 1.5 nm sputtered AZO and ITO on (Al0.14Ga0.86)2O3, and a (Al0.14Ga0.86)2O3

reference sample. The intensity is in arbitrary units (a.u.).
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Figure 3. XPS spectra of core levels to valence band maximum
(VBM) for (a) reference (Al0.14Ga0.86)2O3, (b) thick film sputtered
AZO, and (c) thick film sputtered ITO. The intensity is in arbitrary
units (a.u.).

Figure 4. Bandgap of (a) (Al0.14Ga0.86)2O3 determined by the onset
of energy loss spectrum. Bandgap of sputtered (b) AZO and (c) ITO
determined by RHEELS data. The intensities are in arbitrary
units (a.u.).

Table 1. Summary of measured core levels in these experiments (eV).

Reference (Al0.14Ga0.86)2O3
Reference dielectric Thin dielectric on (AlGa)2O3

Core level VBM
Core

level peak Core-VBM Film (Core) VBM
Core

level peak Core-VBM
Δ Core
level

Valence band
offset

Ga2p
3/2

3.00 1117.60 1114.60 AZO (Zn 2p3) 2.53 1021.92 1019.39 95.8 −0.59
ITO (In 3d5) 2.74 445.12 442.38 673.4 −1.18
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Figure 5. High resolution XPS spectra for the vacuum-core delta regions of (a) (Al0.14Ga0.86)2O3 and (b) sputtered AZO and ITO films. The
intensity is in arbitrary units (a.u.).
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Figure 6. High resolution XPS spectra for the (Al0.14Ga0.86)2O3 to AZO and ITO core delta regions. The intensity is in arbitrary units (a.u.).

Figure 7. Band diagrams for the AZO (left) and ITO (right) sputtered onto (Al0.14Ga0.86)2O3. The valence band offset was determined to be
−0.59±0.08 eV for sputtered AZO and −1.18±0.04 eV for sputtered ITO on β-(Al0.14Ga0.86)2O3. The conduction band offset was
1.21±0.08 eV for AZO and 0.32±0.04 eV for ITO on β-(Al0.14Ga0.86)2O3.

6

Semicond. Sci. Technol. 34 (2019) 025006 C Fares et al



differences in bandgaps and the directly measured valence band
offset, i.e.: E E E E .C g g V

AZO or ITO AlGaOD = - - D The band
offsets are negative for both oxides on β-(Al0.14Ga0.86)2O3,
ensuring good electron and hole transport and hence the ability to
reduce contact resistance when used as an interlayer in metal
stacks on this wide bandgap material.

To place the work in context, figure 8 shows the reported
values for band offsets of dielectrics on (AlxGa1−x)2O3. All of
the reported values to date have been for oxides intended as
gate dielectrics [30, 52, 53], which require a larger bandgap
than the (AlxGa1−x)2O3 and typical need conduction band
offsets of at least 1 eV to obtain good electron confinement.
The work reported in this paper for AZO and ITO shows the
negative offsets required for enhancing carrier transport
across the heterointerface when used as an interlayer between
the metal contact and the (AlxGa1−x)2O3.

Summary and conclusions

The band alignment at both AZO/β-(Al0.14Ga0.86)2O3 and
ITO/β-(Al0.14Ga0.86)2O3 heterojunctions is a nested gap
(type I) band offset. The valence and conduction band offsets
are negative in both cases, and can be used to enhance carrier
transport across the heterointerface. The use of the AZO and
ITO interlayers may be a convenient approach for improving
Ohmic contact resistance on n-type β-(AlxGa1−x)2O3.
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